

Dr. John Dodaro Aquarius Energy, CEO Stanford University, Visiting Scholar

Washington, DC September 8, 2023

Public Release Slide

Project Title:

Nuclear Product Detection From Deuterated Nanoparticles Under Phonon Stimulation

PI: Matteo Cargnello (mcargn@stanford.edu)

Project Outcomes:

Demonstrate real-time production of helium and MeV charged particles from deuterated metallic nanoparticle alloys under resonant stimulation

Hypothesis

- Statement of hypothesis
 - deuterated metallic nanoparticles become LENR-active by (1) creating active sites with small D-D separation, (2) exciting coherent vibrations, and (3) facilitating an energy transfer pathway that produces helium-4 and MeV-scale charged particles at reaction rates significantly amplified above of a bare D2 molecule.
- Summary of pre, active, and post measurements
 - Pre/Post TEM analysis of catalyst
 - Independent Variables:
 - diode irradiation frequency: 800-1000nm (targeting 2-30 THz beat mixing)
 - substrate temperature: 0-500C (RTDs)
 - reactor pressure: 1-20 bar, with pressure transducers
 - catalyst composition: particle shape/dimensions & support (TEM), alloy/dopant ratios (EDX)
 - Dependent Variables:
 - helium concentration: sub-100 ppb (high-res mass spec)
 - charged particle counts: micro-Watt flux (particle detector)
 - catalyst temperature: 0.01C (RTDs)

Experimental Setup – Reactor Cell

- Stainless steel 304 reactor; KBr window
- Macor block holds ceramic heater & substrate
- Cell volume 300cc; reduced for faster mass spec signal response
- ► Deuterium (99.999% purity)
 - isotopic enrichment 99.8
 - H2 < 100, HD < 3000 ppmv

Experimental Setup – Catalyst substrate

- Alumina substrate holds catalyst layer
- ► SiC charged particle detector to catalyst ~5 micron photoresist

Experimental Setup – Solid state diodes

- ► IR diodes 800-1000nm (RPMC) with 1-6 Watt output
- ► Separated by 4"-8" from catalyst surface
- Frequency-tuned by Arroyo TECSource power supply

Data Acquisition

Measurement	Recording Method	Settings	Latency	Storage Media
Helium, Nitrogen, Neon/Argon	Hiden DLS-20 quadrupole mass spec	events, counts/sec (bkgd 15 c/s)	10-30 sec	Hiden MasSoft
Temperature (catalyst, substrate)	RTDs (resistance)	0-500C	< 1 ms	National Instruments DAQ & Labview
Pressure	Pressure transducer (voltage)	1-20 bar	< 1 ms	National Instruments DAQ & Labview
Charged Particle Counts & Energy	Ortec pre-amp & radiation detector bias supply (current, voltage)	events, counts/sec	< 1 ms	National Instruments DAQ & Labview

Data Acquisition – Mass spectrometer (no catalyst)

Data Acquisition – Mass spectrometer (helium calibration)

Data Acquisition – Si detector counts & energy for calibration (Am241)

Modeling

- Alpha particle penetration calculation through SiC depletion layer
- Possible DFT & band structure calculations for phonon spectra

Initial Test Plan

- ▶ Synthesis: grow colloidal Pd-nanomaterials on stable supports
 - Carbon nanotube and ceramic supports for high thermal stability
 - Alloy particles to enhance non-linear optical response
- ▶ Laser Stimulation: Verify diode output at target frequency & THz mixing response
- ▶ Particle Detector: Work with UMich, TTU (Cat. B) teams for detector fabrication

Initial Results

- Developed Initial Catalyst Library
 - Nanoparticles on CNT supports
 - Alloy combinations, Pd-Ni
 - Size 2-20nm, core-shell

- Demonstrated helium sensitivity
 - Calibration pulse with air injection
 - Two modes of operation: real-time
 "flow" runs & sustained "batch" runs

Plans for Next Quarter (Oct-Dec)

- Synthesize target nanoparticle material with reproducible recipe
 - Characterize with TEM, elemental analysis, chemisorption
 - Demonstrate target alloy/dopant concentrations
- ▶ Demonstrate tunable beat frequencies across 2–30 THz range
 - Explore nano-engineered approaches to maximizing laser mixing on catalyst (e.g. nanoparticle composition, dimensions, shape)
- Begin evaluation of SiC charged particle detector
 - Collect I-V curves demonstrating Schottky diode response
 - Record alpha counts & energy with source in reactor cell
- ► Demonstrate helium calibration sensitivity
 - Explore improvements, e.g. getter materials
 - Work with TTU team to test secondary validation

